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Asymptotics of distorted-wave matrix elements for strongly singular potentials
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A simple and asymptotically exact relation is derived for the ratio of the quantum matrix eléBEJ@NE’)
to its classical counterpart in the limit of large eneigy The method is based on an idea from Landau and
works for a large class of potentials including the Lennard-Jones and the exponential potential. The result
should be of interest in problems where large energy transfer is involved. Examples are the high-frequency
wings of collisionally broadened spectra, or vibrational energy transfer of high-frequency oscillators.
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I. INTRODUCTION evaluated by the method of steepest des¢érf,1(. Be-
Many problems in perturbation theory reduce to an esti_gaus_e the reglo_g near thehclassu:_al t:Jrnlng pomt S;Jpph_es the
mate of the distorted wave matrix element ominant cc?ntn ution to the matrix elements, Airy functions
and Langer’s uniform asymptotic wave functions have also
* been employed11].
(EIWE") :f e(r)WIr) g (r)dr. D While the numerical methods have provided useful infor-
0 mation on the specific potentials studied, they supply little
Here W(r) is some interaction potential and the wave func-information on the dependence of the matrix elements on
tions y&(r) belong to bound or continuum states. Integrals ofpair potential V(r) or interaction potentiaM/(r). Further-
this kind appear in vibrational energy relaxatifih2], line more, they seem not to have been used to determine the true
broadening[3], and collision-induced absorptidd]. In the  asymptotic behavior of the matrix elements.
simplest cases Fermi’s golden rule is invoked, according to In this paper we study the asymptotics of matrix elements
which the transition ratesg ., of a system weakly perturbed for the simplest two-body problem where the wave functions
by potentialW(r) is proportional to the square of the corre- refer to the Schrodinger equation

sponding matrix element

52
2m - e +V = Ee(r). 3
WEaE’:?p(E,)|<E|VV|E,>|21 ) 2,U«¢E(r)+ (N e(r) = Ege(r) )

wherep(E’) is the density of final states. We want to determine the exact asymptotic behavior of the

In some of the problems mentioned above, the final enmatrix elements f_or larg& without having to determ_ine the
ergy E' is very large compared to the initial energy This exact wave functions and try to answer the following ques-
happens, for example, in the high-frequency wings of spectr§ons. _ . _ _
[5,6]. Another interesting problem where large differences What is the asymptotic behavior of the matrix element if
are involved is vibrational energy transfer. In this case the>ne€ of the energies tends to infinity?
energy of the oscillator;w, must be compared with the ther- ~ How do the asymptotic matrix elements depend on the
mal energyksT. For high-frequency oscillators at low tem- Pair potentialV(r) and the interaction potential/(r)?
perature the ratidiw/ksT may become very large. In these ~ How do the quantum mechanical matrix elements com-
situations it is important to have some control over thePare to their classical limits?
asymptotic behavior of the matrix elements when ¢bet The analytical methods employ well known techniques.
not both of the energies becomes very large. These are the WKB approximation for the “fast” wave func-

It has been known for a long time that straightforwardtion and Landau's analytic continuation into the complex
numerical methods become difficult in the high energy do-plane. While both methods have been utilized extensively for
main. The reason is, that the corresponding wave functioRumerical and analytical purposes, they do not seem to have
oscillates very rapidly and renders the matrix element expobeen applied to determine the exact asymptotic expressions
nentially small. Particularly severe are the numerical probfor the matrix elements.
lems for large heavy particles near the classical limit. Various
analytical or semianalytical methods have been used to cope
with this problem[7]. Most methods rely on an idea due to
Landau[8] where the WKB wave functions are continued  For large positive the wave function has the form
analytically into the complex plane and the integrals are

II. NORMALIZATION AND CLASSICAL LIMIT

e(r) ~ ye codkr + ¢g), (4)
*Email address: mteubne@gwdg.de where
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,_ 2uE closely. The mathematical singularity associated with colli-
k®= e (5 sion is “shielded” and corresponds to an imaginary tittie
[12]. This leads to exponential decay.

is the wave number angk is a normalization constant. It is In quantum mechanics two particles in a collision always
advantageous to put have a nonzero probability of occupying the same place. The

14 corresponding singularity is no longer shielded. This sug-
Ye= 2(&) (6) gests, that the decay of the matrix elements is always slower
2E than exponentially. It also suggests, that the decay properties

are determined by the steepness of the potential near its sin-
gularity.
In the following we consider potentials with a singularity

1 2 atr=0 which is stronger than™, i.e., we assume that near
2
[veP = S9e=— ™ r=0

©

With this normalization(r)|? tends to the classical prob-
ability density

in the classical limit. Here., is the(relative) velocity of the V() ~Ar", n>2. 12
classical particles far from the collision center. The factor OnypicaI members of this class are the homogeneous potential
2 is due to the particles approaching and receding.

If there are no bound states the above normalization is V() =Ar", n>2, (13

equivalent to or the Lennard-Jones potential

e _ _ o\12 [ 5\6
fo YL Ye(9E = 2mh (T — 9 ® Vi) = 4{(?) . <?> ] 14
and We call them “strongly singular potentials.”
w The exponential potential ekpr/L) is analytic on the
f z/;E(r)df*E,(r)dr =2mhé(E-E'). (9)  real axis and has an essential singularity=ate. Therefore
0

it is also a “strongly singular potential” and shares many
The classical limit of the matrix elements is found from pro_IPr?rtles ;N.'th 'Them. :t IS fdtlrs]cussedtlntqleltall In SeCI'.tVt.B‘ |
the quasiclassical wave functions _Ihe matrix elements of these p9 entials are quaiitatively
different from matrix elements of “weakly singular poten-
L 1(" a tial” where the singularity is weaker theit?. In the following
2 %CO 7 p(s)ds- " (100 we argue that matrix elements of the former decay faster than
fo any power but slower than exponentialgnd typically like
for r>r, wherery is the classical turning point anulr) is ~ €xp{—constw'},0<v=1/2). One can also showunpub-
the classical momentum. This leads in the classical limit tolished that matrix elements of weakly singular potentials
) decay algebraically for high frequency. For example, for the
N dy\dr Coulomb potential the matrix element witki=V decays like
(e Wgino) — ZJr WU)COS(“’L v ) v E’'~34 for large E’. The inverse square potential still decays
o 0 algebraically but with ar\-dependent exponent.
_ Strongly singular potentials have the nice property that
- f_m W(r(D)cogwhdt. (1D) the WKB approximation is asymptotically exact. Using Lan-

dau’s method, this permits an asymptotically exact evalua-
The matrix elements of operatV tend to the Fourier trans- tion of the matrix elements for high frequency.

form of the corresponding classical functiov(r(t)).

A. WKB approximation of strongly singular potentials
IIl. MATRIX ELEMENTS AND STRONGLY SINGULAR . .
POTENTIALS In most previous approaches the true wave functions are

been replaced by their WKB approximations. If this is done,

Before we proceed, it is useful to review some qualitativeone can proceed using numerical methods or employ Land-
arguments connecting the decay properties of the matrix ebu’s analytical continuation into the complex plane. In these
ements with the properties of the potential. approaches the quality of the WKB approximation is usually

In the following we consider potentials with a singularity not studied and it is simply assumed, that the approximation
atr=0 whereV becomes infinite. The asymptotic behavior of is sufficiently accurate for the purpose considered.
the matrix elements then is determined by the nature of the Despite this neglect, the method seems to work very well
repulsive inner part of the potential. This is true classically asn many instances. It does not seem to have been recognized,
well as quantum mechanically. however, that this approximation is not only surprisingly ac-

Classically the matrix elements always decay exponeneurate in most cases, but actually becomes asymptotically
tially with frequency[12]. The reason for this is simply that exact for high energies for some of the most important po-
(at fixed energy Etwo particles cannot approach arbitrarily tentials.
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The simplest way to see this, is to consider the homoge-
neous potential Eq13). The Schrédinger equation reads

hZ
= S0 + AT () = Ede(r). (15
97
Putting
Pe(r) = yede(Nr) (16)
with the inverse length
2 \ 1/(n-2)
A= <ﬁ—) (17)
2uA
we obtain
= Be(y) + Y "ely) = Eely), (18)
where
I 2n/(n-2)
E= E(%Al’“) . (19)
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ﬁZ
= D) + VAT Yelr) ~ 0. (22
Y

For the homogeneous potential Ef3) this equation can be
solved exactly. The solution which vanishesratO is pro-
portional to

2 yzﬂAr_(n_M)

-2 & 23

-
\"rKl/(n—2)<
whereK (x) is the modified Bessel function. For>2 and
smallr this becomes

2 \2uA
Pe(r) ~ cer™* exp{— rz%r‘(”‘z)’z}, (24)
where cg is a constant. In the general case, waf@)
~Ar™, n>2 only near the singularity, the smaillbehavior
is the same. Another approach to derive this result is to in-
troduce the ansat#(r)=e”” and compare the most diver-
gent terms.

This equation depends on a single parameter, the dimen- Equation(24) is valid for any admissible solution of the

sionless energy. Forn> 2 the high energy limit is identical
to the classical limit: — 0. Since the WKB limit also corre-

Schrédinger equation in the smalkegion if the potential is
~Ar™ n>2 nearr=0. The constant is determined by the

sponds tah — 0, this indicates, that the high-energy limit is condition thatye(r) has the correct asymptotic behavior for

asymptotically equal to the WKB limit provided> 2.

larger, EqQ. (4). It can in general only be determined by a

There is another way to draw the same conclusion. Th@umerical solution of the Schrédinger equation.

criterion for the applicability of the WKB approximation to

the potentialV(r) is [8,13]

d h

A 2elE V]| (20

Consider now the WKB approximation for smalllf ry is
the classical turning point defined by(ro)=E, the WKB
approximation for <rq is

KB (1 = (E)lm 1

: - o - 2/ (V(n-B)Y

For high energy this inequality is satisfied away from the oo o

classical turning point. However, we need the inequality for N2u e

all z along the path of integration in Landau’s method. Lan- Xexp{— Tfr W) = Edy}. (25)

dau studies certain paths in the complex plane which avoid

the classical turning point. Putting=(A/E)*"z, the turning  Comparing with Eq.(24) and we observe, that both wave

point is atz=1 and the inequality becomes functions have the same smalbehavior up to a constant
I (E)l/” 1z factor. We therefore may write in the smallkegion

2\2uE\A/) |27 Yelr) ~ agyig (1) (26)

A
The last term is bounded on the paths and we find again thatith a dimensionless facta.
WKB is valid for high energy providech>2. In the mar- In general the amplitude ratia= must be calculated nu-
ginal casen=2 the energy cancels, but the inequality is sat-merically. Figure 2 showsg for the homogeneous potential
isfied if A is sufficiently large. Eq. (13) with n=12.

<l (21)

. . . . Implications for the matrix elements
B. Initial amplitude for strongly singular potentials

We noted above, that the dominant contribution to the

We expect, that the dominant contribution to the mamxmatrix element stems from the smalkange. The largeE’,

element Eq(1) for large B’ stems from the region near the the smaller the relevant range. This indicates that we may

classical turning point. The larg&’, the smaller the turning replace the “slow” wave function by its smalkimit Eq. (24)

point, and the smaller the relevant integration range. This pE 26). Using the f }; d that th q:{_ le-

indicates that we need the behavior of the “slow” wave func->" g. (26). ~sing the former we fin at the matnx ele

tion (r) for smallr. ments factorize
For E'>E and near or below the turning point of the (E|WIE") ~ cedg: (27)

“fast” wave functionyz, we haveV(r)>E. In this region we

may neglect the energy in the “slow” wave function so thatin the asymptotic regioit’ > E. This factorization will be-

e satisfies come more explicit below. Using the latter we obtain
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<E|WIE'>~aEf WO () e (Ndr (28) (EIV\/\E’>~2aE\/g Im{ f (V(2) - B4
0 C

and we may expect this relation to become asymptotically -1/ 6@

exact in the limitE’>E. We noted in Sec. lll A that the X(V(2) - E)Y"W(2ePdzr, (33

“fast” wave function can also asymptotically be replaced by

its WKB approximation, provided the potential is strongly where

singular. Therefore both wave functions can effectively be o -

replaced by their WKB approximation up to the factg: V2u (16 ———— V2u fo ——
Because the dominant contribution to the matrix element G(2) = TMf VV(w) - E'dw- TMJ VV(w) - Edw.

stems from the smal-range, we may replacé/(r) by its z z

small+ expansion. In some of the most interesting applica- (34)

tions W=V or W=-V", Therefore we suppose For z— 0, G(2) tends to a limitG(0). Writing
W(r) ~r7P (29)

for smallr. If W=V or W=-V’ we havep> 2. However, the (E|WE") ~ 2a¢ \/ZeG(O) Im{f V(2 - E) Y4(V(2)
results below, Eq(49) and Eq.(53), are not restricted to 2 c

positive values op. In Sec. VIII A we will discuss an expo-
nential W(r)=e™"- which corresponds tp=0. - E")"VW(2)e®@-CO0qz¢ | (35)
IV. LANDAU’'S METHOD FOR THE EVALUATION OF we note thate®? is the dominant exponential factor in the
MATRIX ELEMENTS matrix element found by Landg8].

In their book[8] Landau and Lifshitz describe a proce-
dure for the asymptotic estimate of the matrix elements.
They introduce the wave functioq}E,(z) which solves the The integral can be evaluated by steepest descent. The
Schrodinger equation in the whole complex plane and satiscorresponding contout starts fromz=0 and must satisfy the
fies Rdyp, (1)}=ye(r) on the real axis. For large real condition
Y, (r) ~ ye @K ee)_yt (2) has the same relation to the real IM{G(2) - G(0)} = 0. (36)
function ¢e/(r) as €< has to cokr. ¢, (2) decays like
e X M@ in the upper half plane.

Landau expresses the matrix element ED. where E \ﬂ z /
<E' as G(2)-G(0) = Tf [VV(w) = E-vyV(w) - E"]dw

0

(EWE") = RE{f W(r)we(r)tﬂ;(r)dr}- (30 (37
0
. is real and decays monotonically. For smalthe integrand
Since (), (2) decays exponentially in the upper half of G(z)-G(0) is

plane likee k' ¥IM@ the path of integration can be moved / ,
to any pathC which starts az=0 and ends aite. Therefore ~\r(w)<l __E _,,_E ) _E T_EWnlz (39)
2V(w) 2V(w) 2\VA

(EWE) = Re{ JC W(Z) e(2) ng,(z)dz}. (39 and therefore for smalt

Section Il A indicates tha{Z/E,(z) asymptotically tends to the G(2) - G(O) ~ MmwE-E 2
WKB approximation orC, providedC remains within a sec- @-G0O 2A b n+2
tor 0O< e<argz<(2m/n)—e for smallzand some>0. The _ .
WKB approximation ofy,(z) has been determined by Lan- SinceG(z)-G(0) should be real and monotonically decreas-

Asymptotic evaluation of the integral

On this contour

Z(n+2)/2_ (39)

dau[8] as ing onC for small|z, in this regionC is given by
14 5 o z=te?m/(m2), (40)
J2 r ——
—2i<#,> ex MfO\V(y)—E'dy .
2(V(9-E") hoJ, Then
(32)
G(2) - G(0) ~ - i el t(n+2)/2 41
wherer is the turning point satisfyiny(r,)=E’. The square (2) - G( n+t2 Vopa® (41)
root is real and positive for @z<ry,.
Inserting and using Eq28) we obtain with
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E'-E valid for potentials with a singularity~-Ar™, n>2 nearr
0= P (42) =0. E is fixed,E' ~-E=%w, andW(r) ~r P nearr=0.
In the special case whekgr)=Ar™" for all r we have

SinceG(z)-G(0) appears in the exponent inside the integral,

it must effectively be bounded fab— o and the relevant _ F(l N })
in the integral satis / 2 n
g fy F(E) - n\_ﬂ- 1 5(n—2)/2n. (50)
2 M F<1 + —)
(n+2)/2 _
Z =0(1). 43
12 2Aw| | (1) (43) n

For thesez it is easy to verify that|V(z)|>E’ (which is
equivalent tog’ > 1). The integral in question then becomes
for large

A. Discussion and comparison with classical matrix
element

What is the ultimate decay of the matrix element tor

/i—f Z"W(z)exp 2 \/ﬂw|z|(”+2)/2 dz. (44) —? We have
VAJe n+2 V2A

d__ \2u ([ dw .
Because the relevaatare so small we may replackeby the d_EF(E)_ 2% fo V,V(W)_Edwzh t*(B). (51)

initial section Eq.(40). For the same reason only the behav-
ior of W(2) for small z is relevant which we assume to have In a previous publicatiofil2] it has been argued, thet (E’)
the form Eq.(29). With dz=e?"/("2dt the integral becomes for largeE’ decays at least as fast BS 2 regardless of the
. detailed nature of the potential. This indicates, ') for
_ L i J {/2-p eXp{—i I wt(n+2)/2}dt large E’ does not increase faster theE'. Therefore the
VA 0 n+2 V2A matrix element for largew decays not faster than
exp{—const/w}. This is different from the classical matrix

2pl(n+2) J !
- \/ze—[zwi/(mz)]p( 2 /ﬂ) P F(l elements which all decay exponentially for large frequency
M n+2 V2A [12].
5 Let us formally take the classical limit of the right-hand
- —p)w—1+[2pf(n+2>]_ (45) side in Eq.(49). In this limit ac— 1 and the right-hand side
n+2 becomes
(EIWE")
V. ASYMPTOTIC MATRIX ELEMENT 2 ( 2 u >2p/(n+2) {20142}t
~—_— LA —1+2p/(n+ e_“)*_
Inserting into Eq(35) we obtain F( 2p ) n+2 V2A @
n+2
, _2mp 2 P )2p/(n+2)
(EIWE") 2aEsmn+2(n+2\/2A (52)

2p This is precisely the asymptotic matrix element of the corre-
><F<1——>w'1+[29’<”+2)]e‘3(°>. (46)  sponding classical problem derived previously by a purely
n+2 classical methodsee Eq(87) in Ref. [12]]. It is satisfying

The exponent can be written as that these two very different methods lead to the same result.
Denoting the quantum or classical meaning of the matrix
G(0)=F(E) -F(E") (47)  element by an index, we can write the main result in the form
with

(EWE +fiw)quant age FEHOFE0F' ®  (53)

o0 (fo 20 (* (E|WIE + frw)g
FE)= " f [Ww) - W(w) - E]+ ~£ J Wiwdw. e |
hoJo hoJy, In particular, in the asymptotic region of largethe ratio of
(49) the matrix elements is independent of the operator

Thus we obtain finally B. Exponential potential
20 2 L 2p/(n+2) Let us compare with the exactly solvable exponential po-
(EWE") ~ag———| —=\/ = tential. It has an essential singularity at infinity and the re-
r(ﬂ) n+2 V2A sults of the previous section are applicable after some trivial
n+2 modifications.
X ¢ 2PN+ 2] FBI-FE)) (49) The Schrddinger equation for the potential

— r/iL
This is the main result of this paper. It is the exact asymptotic V) =Ae (54)
expression for the matrix element in the linkit —. It is  was solved exactly by Jackson and Mfit4]. Putting
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r classical matrix elements coincid&5] at =0 if W=V'.
Pe(r) = ’)’E%(E + P) (59)
VI. NUMERICAL METHODS
with In this section some methods for the numerical calcula-
2uAL? tions of the matrix elements are discussed. The numerical
>—€e’=1 (56) calculations were done using Mathematica, usually with a
h precision of 16 or 24 digits. In a few cases up to 44 digits
the Schrodinger equation becomes were needed in the high energy region.
, B 5 The matrix elements pose numerical problems only for
- oY) +€70(y) = @ (y), (57)  very large energy where the wave function oscillates very
wherex is the dimensionless wave number rapidly. In such a case the path of integration must be de-
formed into some curve in the complex plane which damp-
- 2ul? ens the amplitude of the oscillations. However it turns out,
K= 52 E. (58) that this is not necessary for our purposes. The frequencies
accessible by integration on the real axis alone are amply
The normalized solution is sufficient to verify the analytic predictions.

2k sinh(27k) _ A. Potential V=Ar~12
ey) =1/ 7K2ik(ze v2), (59

As mentioned previously, the Schroédinger equation for
whereK, is the modified Bessel function. The matrix ele- the homogeneous potential can be reduced by rescaling to

ment of the potential has also been calculated exactly b{rd- (18). We must calculate the amplitude raag and the

Jackson and Mott14]. It is given by matrix elements proper. _ _
To obtain accurate values of the wave function, we split

Vsinh(27k)sinh(27«") the integration region into two parts. From the classical turn-
cosh 27« — cosh 21« (60) ing point at&' to infinity the original Eq.(18) is solved.

From O to the classical turning point we extract the
whereE-E’=%iw. The classical matrix element is asymptotic factor Eq(24) and write

(EIVIE") = 4mrpul 2w

2mul%w

f d(r(D)dt = . (6D ¢(2 =u@2" exp{—i ‘“‘2)’2}- (65
- . | w n-2
smh(wL Ew)

The resulting differential equation fax(z)

Let us compare with our asymptotic results in the previ- n n2 - 4n
ous section. One finds after some algebra u” + (2—2 + 22‘”’2>u’ + <8+ 162 )u =0 (66)
— A~ TK, | i
ag =€ Y2 sinh 2k (62) is less singular az=0. It can numerically be solved far
and =0.01. For smalk the relevant solution satisfies
5~ / -4)
i Y2R) [ W2=1-""Y oz, (67)
G(0) = Z_|I>I’Tjoc P {fz vAe E'dw 16(n - 2)

o which furnishes the boundary condition. Pasting the two so-
- f VAEWL —Edw = m(k - K'). (63) lutions together yields the wave function.
z Although we do not need it for the matrix elements, it is

To calculate the asvmptotic matrix element we cannot usin'[eresting to determine the contodrof steepest descent
ymp iscussed in Sec. IV.

Eq. (49) directly since this assumes a singularity of the form Figure 1 shows the contougsof steepest descent for the

-n
r". However we can use E¢3). From Eq_.(61) we obs_erve homogeneous potential with=12 and£=0. The contours
that the factor multiplying the exponent in the classical ma-

. X 5 . . are linear near the origin with slope tafi7 and bend up-
trix element is 4rul%w. Equation(53) then predicts for the "o ot the classical turning poiftt /12 Far from the
asymptotic quantum matrix element

origin they become vertical since {@“f(z)}~const—\ﬂ?x for

Amul2we ™2 sinh 2rke™< <) large|Z. &(2) is real and decays monotonically 6n
= 4rul w02 sinh 2rke™™ (64) B. Lennard-Jones potential

and this is indeed the correct asymptotic form of Jackson- 10 rescale the Schrédinger equation for the LJ potential
Mott’s result. 52 a\2 [o\6

At zero frequency classical and quantum matrix elements AU 46[(‘) - (—) }lﬁ(f) =Ey(r), (68
coincide. The reason is that for the exponential potential the H ' '
force is proportional to the potential. In general quantum andve put
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1.2
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3t 3
. 0.6
2t 2
0.4
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. , . -4 -3 -2 -1 1 10 2
0.6 0.8 1 1.2 10 10 10 13 10

From left to rights’ =100, 10, 1, and 0.1. versusg. From top to bottomz=15, 10, 5, 2, 0.5, and 0.1.

We noted in Sec. Il A that the largédimit is identical to
(r) = o(rlo) (69) the classical limit. In particular, the initial WKB amplitude is
asymptotically exact for largE. Thereforeag tends to 1 for
Elﬁoo. For smallE one can show thadg is proportional to
_ + -12 _ 6 = 2 E“
@00 + mlx XD)ex) = ke, (79 Figure 2 shows the amplitude ratio versus the scaled en-
where ergy £ for the homogeneous potentid] .
For the Lennard-Jones potential the amplitude ratio
2= Ez_'“oz (71) depends on the dimensionless parametgend on the en-
h? ergy viaq=E/4e.
Figure 3 shows the dependence @tior various 7. For

large energy the WKB approximation becomes exactand

and obtain

is a dimensionless wave number and

2u tends to 1 for ally. For small energy it is again proportional
7= 45502 (72) o EY. For fixedq and »— = the system becomes classical
andag—1 again. For very small energies, howevaf,0s-
is a dimensionless parameter. cillates as a function o#.
The numerical procedure for the LJ potential is very simi-  Figure 4 displays the amplitude versusfor q=1071,
lar to the homogeneous potential. 1072, and 10%. For q— 0 the amplitude diverges for certain

values of 5. This is due to the appearance of zero eigenval-
ues atn=22.36,148,385... For largen the oscillations
As mentioned previously, the factag is needed to cor- decrease rapidly.
rect for the fact that the WKB approximation is not exact for
the “slow” wave functionyz nearr=0. 1-a¢ is a measure
for the corresponding error.
In general, the amplitude rat@- must be calculated nu- We are finally in a position to compare the analytical pre-
merically. For very small and large energies, however, addidiction for the matrix elements with numerical results.
tional information is available.

VII. INITIAL AMPLITUDES

VIIl. ASYMPTOTIC MATRIX ELEMENTS: COMPARING
ANALYTICAL AND NUMERICAL RESULTS

2.5
2| '
0.8
1.5
0.6
1} e 11
0.4 b
0.5f
0.2
1 10 100 1000
n
0% 10 102 10t 1 10 107 . . :
3 FIG. 4. Amplitude ratioag for for the Lennard-Jones potential
versusz. Dotted curveq=10"3; dashed curveq=1072 full curve:
FIG. 2. Amplitude ratioag for Vq, potential. g=10"%
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In order to test approximation E@53), we consider the
ratio of the two sides, i.e., we numerically calculate the qual-

ity factor

_(EWE+hw) uant 1R (E+ha)-F(E)-hoF'(B)  (73)
=l ,
<E|\M E +h0)class

Any deviation ofQ from 1 directly measures the error in

approximation Eq(53).

A. Potential V=Ar~1?
From Eq.(18) we obtain for the matrix element
(E[rPE") = YEJ’E')\p_lf X Phe(X) e (x)dx.  (74)
0

The corresponding classical matrix element is

f r P(t)coq wt)dt, (75)
wherer(t) satisfies the equation of motion
%'rz +Ar=E, (76)

We get rid of the constants by rescaling

1/n
() = (g) Vo), 77

E/E 1n
w5 7

is the natural frequency scale of the classical sysf&gj.
y(x) satisfies

where

1
eyl (79)

and the classical matrix element becomes
2 E (p=1/n [
\/—’u<—> J yP(2)co 2 7)dz (80)
E\A —% [O)

The ratio of the matrix elements then is

o0

X Ppe(X) per (X)dx
<E|r_p| E,>quant _ 2( E) 1M((/v—(p—l)/n fo ’ ’

E r_p E, - g/ © ’
( | | >c|ass f y‘P(z)co< 22) dz
—oo 2]

(81)

with E'=E+Aw as usualf’ is related tow by

g =g+ L gmain (82)

(200]

The exponent in Eq.73) is

PHYSICAL REVIEW E 70, 061104(2004)

0.1 1 10 100 1000
w/ Wy

FIG. 5. Quality factorQ for Vy, potential andp=13. From top
to bottom:£=1, 3, 10, and 50.

z0)

I'f-+-

— \2 n |: n (g/(n—z)/Zn _ g(n—2)/2n) v
n- 2 2(1)0

(83

where Eq.(50) has been used.

Figure 5 shows the quality factor f@=13, i.e., W=V'.
As expected)— 1 for w> wg or £ 1. In this case quantum
and classical matrix element coincide for0. Foro—0, Q
tends toag1 (compare Fig. 2

For functions of the typ&\(r)=r"P the matrix elements
depend only on¢ and &£’. If W is not of this form, new
dimensionless parameters are generated which make an over-
view of the quality of approximation Eq53) more time
consuming. As a single example let us consider the exponen-
tial

W(r) = Ae L, (84)

again for the homogeneous potential Ef3) with n=12.
OperatorsW of this kind are of interest in collision-induced
absorption[4]. Here the new dimensionless parameter

0.1 1 10 100 1000

FIG. 6. Quality factor forV;, potential and exponentialV
=e ¢ for £=0.2(broken lineg and =5 (full lines). Values of€ are
1, 3, 10, and 50¢ increases for broke(full) lines from bottom to
top (top to bottom).
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0.01 0.1 1 10

W/ wg

100 1000

FIG. 7. Quality factorQ for the LJ potential. From top to bot-
tom: =0.5, 1, 3, and 10.

=LA

appears whera is defined in Eq(17).

Figure 6 displays the quality factor of exponentalfor
various values of and (. As expected, approximatiof®3)
becomes exact in the limib— oo or £— oo,

(85)

B. Lennard-Jones potential

For the LJ potential the most interesting operatbis the
force. A natural frequency scale is

|8e
wo=1\—o L.
)

Figure 7 displays the quality factor fa/=V'. Different
curves refer to different values of [see Eq.(72)]. As ex-
pected,Q— 1 and the approximatio(63) becomes exact if
w or n tend to infinity. The energ¥ of the “slow” compo-
nent is fixed ag=1 in Fig. 7.

The error is maximal for frequencies<lw/wy=<10. In

(86)

PHYSICAL REVIEW E 70, 061104(2004)

50

1 10
a

FIG. 8. Contour plot of maximal quality fact@,, for the LJ
potential as a function af and 7.

IX. SUMMARY

A simple and asymptotically exact relatigiq. (49) or
(53)] is derived for the quantum matrix elemej@W|E’) if
one (but not both of the energies becomes very large. The
matrix elements refer to two-body collisions and it is as-
sumed that the interaction potential is strongly singular. The
method is an elaboration of an idea of Landau discussed in
Landau-Lifshitz[8].

For potentials with a singularity at=0 the condition of
strong singularity i8/(r) ~r™, n> 2 for smallr. An example
is the Lennard-Jones potential.

The theory applies to a few other potentials like the ex-
ponential potential. The Coulomb potential, however, is not
strongly singular and shows qualitatively different decay
properties.

In the form Eq.(53) the main approximation shows small
to moderate errors over the whole frequency range when
compared to numerical calculations. For example, Fig. 7 dis-
plays the relative errorQ.x versus frequency for the

order to obtain an overview over the maximal error, Fig. 8Lennard-Jones potential.

shows a contour plot of the maximal value @f Q. as a
function of » andg.

In Fig. 8 the corresponding value ab varies from
wl wy=0.4 for the smallesy and » to w/ wy=8 for the largest
values ofg and 7. As expectedQax tends to 1 ifq or %
tends to infinity.

For largeE the matrix elements of such potentials decay
faster than any power but slower than exponentially. For po-
tentials V(r) ~r™, n>2 the ultimate decay is-exp[-E“}
with o=(n-2)/2n. The exponential potential corresponds to
o=1/2. There are indications that=<1/2 for all strongly
singular potentials.
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