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A simple and asymptotically exact relation is derived for the ratio of the quantum matrix elementkEuWuE8l
to its classical counterpart in the limit of large energyE8. The method is based on an idea from Landau and
works for a large class of potentials including the Lennard-Jones and the exponential potential. The result
should be of interest in problems where large energy transfer is involved. Examples are the high-frequency
wings of collisionally broadened spectra, or vibrational energy transfer of high-frequency oscillators.
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I. INTRODUCTION

Many problems in perturbation theory reduce to an esti-
mate of the distorted wave matrix element

kEuWuE8l =E
0

`

cEsrdWsrdcE8srddr. s1d

HereWsrd is some interaction potential and the wave func-
tionscEsrd belong to bound or continuum states. Integrals of
this kind appear in vibrational energy relaxation[1,2], line
broadening[3], and collision-induced absorption[4]. In the
simplest cases Fermi’s golden rule is invoked, according to
which the transition ratewE→E8 of a system weakly perturbed
by potentialWsrd is proportional to the square of the corre-
sponding matrix element

wE→E8 =
2p

"
rsE8dukEuWuE8lu2, s2d

wherersE8d is the density of final states.
In some of the problems mentioned above, the final en-

ergy E8 is very large compared to the initial energyE. This
happens, for example, in the high-frequency wings of spectra
[5,6]. Another interesting problem where large differences
are involved is vibrational energy transfer. In this case the
energy of the oscillator,"v, must be compared with the ther-
mal energykBT. For high-frequency oscillators at low tem-
perature the ratio"v /kBT may become very large. In these
situations it is important to have some control over the
asymptotic behavior of the matrix elements when one(but
not both) of the energies becomes very large.

It has been known for a long time that straightforward
numerical methods become difficult in the high energy do-
main. The reason is, that the corresponding wave function
oscillates very rapidly and renders the matrix element expo-
nentially small. Particularly severe are the numerical prob-
lems for large heavy particles near the classical limit. Various
analytical or semianalytical methods have been used to cope
with this problem[7]. Most methods rely on an idea due to
Landau[8] where the WKB wave functions are continued
analytically into the complex plane and the integrals are

evaluated by the method of steepest descent[4,9,10]. Be-
cause the region near the classical turning point supplies the
dominant contribution to the matrix elements, Airy functions
and Langer’s uniform asymptotic wave functions have also
been employed[11].

While the numerical methods have provided useful infor-
mation on the specific potentials studied, they supply little
information on the dependence of the matrix elements on
pair potentialVsrd or interaction potentialWsrd. Further-
more, they seem not to have been used to determine the true
asymptotic behavior of the matrix elements.

In this paper we study the asymptotics of matrix elements
for the simplest two-body problem where the wave functions
refer to the Schrödinger equation

−
"2

2m
cE9srd + VsrdcEsrd = EcEsrd. s3d

We want to determine the exact asymptotic behavior of the
matrix elements for largeE without having to determine the
exact wave functions and try to answer the following ques-
tions.

What is the asymptotic behavior of the matrix element if
one of the energies tends to infinity?

How do the asymptotic matrix elements depend on the
pair potentialVsrd and the interaction potentialWsrd?

How do the quantum mechanical matrix elements com-
pare to their classical limits?

The analytical methods employ well known techniques.
These are the WKB approximation for the “fast” wave func-
tion and Landau’s analytic continuation into the complex
plane. While both methods have been utilized extensively for
numerical and analytical purposes, they do not seem to have
been applied to determine the exact asymptotic expressions
for the matrix elements.

II. NORMALIZATION AND CLASSICAL LIMIT

For large positiver the wave function has the form

cEsrd , gE cosskr + wEd, s4d
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k2 =
2mE

"2 s5d

is the wave number andgE is a normalization constant. It is
advantageous to put

gE = 2S m

2E
D1/4

. s6d

With this normalizationucEsrdu2 tends to the classical prob-
ability density

ucEsrdu2 → 1

2
gE

2 =
2

v`

s7d

in the classical limit. Herev` is the(relative) velocity of the
classical particles far from the collision center. The factor of
2 is due to the particles approaching and receding.

If there are no bound states the above normalization is
equivalent to

E
0

`

cE
* srdcEssddE= 2p"dsr − sd s8d

and

E
0

`

cEsrdcE8
* srddr = 2p"dsE − E8d. s9d

The classical limit of the matrix elements is found from
the quasiclassical wave functions

2Î m

psrd
cosS 1

"
E

r0

r

pssdds−
p

4D s10d

for r . r0 wherer0 is the classical turning point andpsrd is
the classical momentum. This leads in the classical limit to

kcEuWucE+"vl → 2E
r0

`

WsrdcosSvE
r0

r dy

v Ddr

v

=E
−`

`

W„rstd…cossvtddt. s11d

The matrix elements of operatorW tend to the Fourier trans-
form of the corresponding classical functionW(rstd).

III. MATRIX ELEMENTS AND STRONGLY SINGULAR
POTENTIALS

Before we proceed, it is useful to review some qualitative
arguments connecting the decay properties of the matrix el-
ements with the properties of the potential.

In the following we consider potentials with a singularity
at r =0 whereV becomes infinite. The asymptotic behavior of
the matrix elements then is determined by the nature of the
repulsive inner part of the potential. This is true classically as
well as quantum mechanically.

Classically the matrix elements always decay exponen-
tially with frequency[12]. The reason for this is simply that
(at fixed energy E) two particles cannot approach arbitrarily

closely. The mathematical singularity associated with colli-
sion is “shielded” and corresponds to an imaginary timeit*
[12]. This leads to exponential decay.

In quantum mechanics two particles in a collision always
have a nonzero probability of occupying the same place. The
corresponding singularity is no longer shielded. This sug-
gests, that the decay of the matrix elements is always slower
than exponentially. It also suggests, that the decay properties
are determined by the steepness of the potential near its sin-
gularity.

In the following we consider potentials with a singularity
at r =0 which is stronger thanr−2, i.e., we assume that near
r =0

Vsrd , Ar−n, n . 2. s12d

Typical members of this class are the homogeneous potential

Vnsrd = Ar−n, n . 2, s13d

or the Lennard-Jones potential

VLJsrd = 4eFSs

r
D12

− Ss

r
D6G . s14d

We call them “strongly singular potentials.”
The exponential potential exps−r /Ld is analytic on the

real axis and has an essential singularity atr =−`. Therefore
it is also a “strongly singular potential” and shares many
properties with them. It is discussed in detail in Sec. V B.

The matrix elements of these potentials are qualitatively
different from matrix elements of “weakly singular poten-
tial” where the singularity is weaker thatr−2. In the following
we argue that matrix elements of the former decay faster than
any power but slower than exponentially(and typically like
exph−constvnj ,0,nø1/2). One can also show(unpub-
lished) that matrix elements of weakly singular potentials
decay algebraically for high frequency. For example, for the
Coulomb potential the matrix element withW=V decays like
E8−3/4 for largeE8. The inverse square potential still decays
algebraically but with anA-dependent exponent.

Strongly singular potentials have the nice property that
the WKB approximation is asymptotically exact. Using Lan-
dau’s method, this permits an asymptotically exact evalua-
tion of the matrix elements for high frequency.

A. WKB approximation of strongly singular potentials

In most previous approaches the true wave functions are
been replaced by their WKB approximations. If this is done,
one can proceed using numerical methods or employ Land-
au’s analytical continuation into the complex plane. In these
approaches the quality of the WKB approximation is usually
not studied and it is simply assumed, that the approximation
is sufficiently accurate for the purpose considered.

Despite this neglect, the method seems to work very well
in many instances. It does not seem to have been recognized,
however, that this approximation is not only surprisingly ac-
curate in most cases, but actually becomes asymptotically
exact for high energies for some of the most important po-
tentials.
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The simplest way to see this, is to consider the homoge-
neous potential Eq.(13). The Schrödinger equation reads

−
"2

2m
cE9srd + Ar−ncEsrd = EcEsrd. s15d

Putting

cEsrd = gEfEslrd s16d

with the inverse length

l = S "2

2mA
D1/sn−2d

s17d

we obtain

− fE9syd + y−nfEsyd = EfEsyd, s18d

where

E = ESÎ2m

"
A1/nD2n/sn−2d

. s19d

This equation depends on a single parameter, the dimen-
sionless energyE. Forn.2 the high energy limit is identical
to the classical limit"→0. Since the WKB limit also corre-
sponds to"→0, this indicates, that the high-energy limit is
asymptotically equal to the WKB limit providedn.2.

There is another way to draw the same conclusion. The
criterion for the applicability of the WKB approximation to
the potentialVsrd is [8,13]

U d

dx

"

Î2mfE − Vsrdg
U ! 1. s20d

For high energy this inequality is satisfied away from the
classical turning point. However, we need the inequality for
all z along the path of integration in Landau’s method. Lan-
dau studies certain paths in the complex plane which avoid
the classical turning point. Puttingr =sA/Ed1/nz, the turning
point is atz=1 and the inequality becomes

n

2

"

Î2mE
SE

A
D1/n uzu−n−1

uz−n − 1u3/2 ! 1. s21d

The last term is bounded on the paths and we find again that
WKB is valid for high energy providedn.2. In the mar-
ginal casen=2 the energy cancels, but the inequality is sat-
isfied if A is sufficiently large.

B. Initial amplitude for strongly singular potentials

We expect, that the dominant contribution to the matrix
element Eq.(1) for largeE8 stems from the region near the
classical turning point. The largerE8, the smaller the turning
point, and the smaller the relevant integration range. This
indicates that we need the behavior of the “slow” wave func-
tion cEsrd for small r.

For E8@E and near or below the turning point of the
“fast” wave functioncE8 we haveVsrd@E. In this region we
may neglect the energy in the “slow” wave function so that
cE satisfies

−
"2

2m
cE9srd + VsrdcEsrd , 0. s22d

For the homogeneous potential Eq.(13) this equation can be
solved exactly. The solution which vanishes atr =0 is pro-
portional to

ÎrK1/sn−2dS 2

n − 2

Î2mA

"
r−sn−2d/2D , s23d

whereKnsxd is the modified Bessel function. Forn.2 and
small r this becomes

cEsrd , cErn/4 expH−
2

n − 2

Î2mA

"
r−sn−2d/2J , s24d

where cE is a constant. In the general case, wereVsrd
,Ar−n, n.2 only near the singularity, the smallr behavior
is the same. Another approach to derive this result is to in-
troduce the ansatzcsrd=ePsrd and compare the most diver-
gent terms.

Equation(24) is valid for any admissible solution of the
Schrödinger equation in the small-r region if the potential is
,Ar−n, n.2 nearr =0. The constant is determined by the
condition thatcEsrd has the correct asymptotic behavior for
large r, Eq. (4). It can in general only be determined by a
numerical solution of the Schrödinger equation.

Consider now the WKB approximation for smallr. If r0 is
the classical turning point defined byVsr0d=E, the WKB
approximation forr , r0 is

cE
WKBsrd = Sm

2
D1/4 1

„Vsrd − E…1/4

3expH−
Î2m

"
E

r

r0 ÎVsyd − EdyJ . s25d

Comparing with Eq.(24) and we observe, that both wave
functions have the same small-r behavior up to a constant
factor. We therefore may write in the small-r region

cEsrd , aEcE
WKBsrd s26d

with a dimensionless factoraE.
In general the amplitude ratioaE must be calculated nu-

merically. Figure 2 showsaE for the homogeneous potential
Eq. (13) with n=12.

Implications for the matrix elements

We noted above, that the dominant contribution to the
matrix element stems from the small-r range. The largerE8,
the smaller the relevant range. This indicates that we may
replace the “slow” wave function by its small-r limit Eq. (24)
or Eq. (26). Using the former we find that the matrix ele-
ments factorize

kEuWuE8l , cEdE8 s27d

in the asymptotic regionE8@E. This factorization will be-
come more explicit below. Using the latter we obtain
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kEuWuE8l , aEE
0

`

WsrdcE
WKBsrdcE8srddr s28d

and we may expect this relation to become asymptotically
exact in the limitE8@E. We noted in Sec. III A that the
“fast” wave function can also asymptotically be replaced by
its WKB approximation, provided the potential is strongly
singular. Therefore both wave functions can effectively be
replaced by their WKB approximation up to the factoraE.

Because the dominant contribution to the matrix element
stems from the small-r range, we may replaceWsrd by its
small-r expansion. In some of the most interesting applica-
tions W=V or W=−V8. Therefore we suppose

Wsrd , r−p s29d

for small r. If W=V or W=−V8 we havep.2. However, the
results below, Eq.(49) and Eq.(53), are not restricted to
positive values ofp. In Sec. VIII A we will discuss an expo-
nentialWsrd=e−r/L which corresponds top=0.

IV. LANDAU’S METHOD FOR THE EVALUATION OF
MATRIX ELEMENTS

In their book [8] Landau and Lifshitz describe a proce-
dure for the asymptotic estimate of the matrix elements.
They introduce the wave functioncE8

+ szd which solves the
Schrödinger equation in the whole complex plane and satis-
fies RehcE8

+ srdj=cE8srd on the real axis. For large realr,

cE8
+ srd,gE8e

isk8r+wE8d. cE8
+ szd has the same relation to the real

function cE8srd as eikz has to coskr. cE8
+ szd decays like

e−k8 Imszd in the upper half plane.
Landau expresses the matrix element Eq.(1) where E

,E8 as

kEuWuE8l = ReHE
0

`

WsrdcEsrdcE8
+ srddrJ . s30d

Since cEszdcE8
+ szd decays exponentially in the upper half

plane likee−sk8−kdImszd, the path of integration can be moved
to any pathC which starts atz=0 and ends ati`. Therefore

kEuWuE8l = ReHE
C

WszdcEszdcE8
+ szddzJ . s31d

Section III A indicates thatcE8
+ szd asymptotically tends to the

WKB approximation onC, providedC remains within a sec-
tor 0,e,argz, s2p /nd−e for smallz and somee.0. The
WKB approximation ofcE8

+ szd has been determined by Lan-
dau [8] as

− 2iS m

2„Vszd − E8…
D1/4

expHÎ2m

"
E

z

r08 ÎVsyd − E8dyJ .

s32d

wherer08 is the turning point satisfyingVsr08d=E8. The square
root is real and positive for 0,z, r08.

Inserting and using Eq.(28) we obtain

kEuWuE8l , 2aEÎm

2
ImHE

C

„Vszd − E…−1/4

3„Vszd − E8…−1/4WszdeGszddzJ , s33d

where

Gszd =
Î2m

"
E

z

r09 ÎVswd − E8dw−
Î2m

"
E

z

r0 ÎVswd − Edw.

s34d

For z→0, Gszd tends to a limitGs0d. Writing

kEuWuE8l , 2aEÎm

2
eGs0d ImHE

C

„Vszd − E…−1/4
„Vszd

− E8…−1/4WszdeGszd−Gs0ddzJ , s35d

we note thateGs0d is the dominant exponential factor in the
matrix element found by Landau[8].

Asymptotic evaluation of the integral

The integral can be evaluated by steepest descent. The
corresponding contourC starts fromz=0 and must satisfy the
condition

ImhGszd − Gs0dj = 0. s36d

On this contour

Gszd − Gs0d =
Î2m

"
E

0

z

fÎVswd − E − ÎVswd − E8gdw

s37d

is real and decays monotonically. For smallw the integrand
of Gszd−Gs0d is

,ÎVswdS1 −
E

2Vswd
− 1 +

E8

2VswdD ,
E8 − E

2ÎA
wn/2 s38d

and therefore for smallz

Gszd − Gs0d ,Î m

2A

E8 − E

"

2

n + 2
zsn+2d/2. s39d

SinceGszd−Gs0d should be real and monotonically decreas-
ing on C for small uzu, in this regionC is given by

z= te2pi/sn+2d. s40d

Then

Gszd − Gs0d , −
2

n + 2
Î m

2A
vtsn+2d/2 s41d

with
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v =
E8 − E

"
. s42d

SinceGszd−Gs0d appears in the exponent inside the integral,
it must effectively be bounded forv→` and the relevantz
in the integral satisfy

2

n + 2
Î m

2A
vuzusn+2d/2 = Os1d. s43d

For thesez it is easy to verify thatuVszdu@E8 (which is
equivalent toE8@1). The integral in question then becomes
for largev

1
ÎA
E

C
zn/2WszdexpH−

2

n + 2
Î m

2A
vuzusn+2d/2Jdz. s44d

Because the relevantz are so small we may replaceC by the
initial section Eq.(40). For the same reason only the behav-
ior of Wszd for small z is relevant which we assume to have
the form Eq.(29). With dz=e2pi/sn+2ddt the integral becomes

−
1

ÎA
e−f2pi/sn+2dgpE

0

`

tn/2−p expH−
2

n + 2
Î m

2A
vtsn+2d/2Jdt

= −Î 2

m
e−f2pi/sn+2dgpS 2

n + 2
Î m

2A
D2p/sn+2d

GS1

−
2p

n + 2
Dv−1+f2p/sn+2dg. s45d

V. ASYMPTOTIC MATRIX ELEMENT

Inserting into Eq.(35) we obtain

kEuWuE8l , 2aE sin
2pp

n + 2
S 2

n + 2
Î m

2A
D2p/sn+2d

3GS1 −
2p

n + 2
Dv−1+f2p/sn+2dgeGs0d. s46d

The exponent can be written as

Gs0d = FsEd − FsE8d s47d

with

FsEd =
Î2m

"
E

0

r0

fÎVswd − ÎVswd − Eg +
Î2m

"
E

r0

`

ÎVswddw.

s48d

Thus we obtain finally

kEuWuE8l , aE
2p

GS 2p

n + 2
DS

2

n + 2
Î m

2A
D2p/sn+2d

3v−1+f2p/sn+2dgeFsEd−FsE8d. s49d

This is the main result of this paper. It is the exact asymptotic
expression for the matrix element in the limitE8→`. It is

valid for potentials with a singularity,Ar−n, n.2 nearr
=0. E is fixed,E8−E="v, andWsrd, r−p nearr =0.

In the special case whereVsrd=Ar−n for all r we have

FsEd =
Îp

n − 2

GS1

2
+

1

n
D

GS1 +
1

n
D Esn−2d/2n. s50d

A. Discussion and comparison with classical matrix
element

What is the ultimate decay of the matrix element forv
→`? We have

d

dE
FsEd =

Î2m

2"
E

0

r0 dw
ÎVswd − E

dw; "−1t * sEd. s51d

In a previous publication[12] it has been argued, thatt* sE8d
for largeE8 decays at least as fast asE8−1/2 regardless of the
detailed nature of the potential. This indicates, thatFsE8d for
large E8 does not increase faster thatÎE8. Therefore the
matrix element for large v decays not faster than
exph−constÎvj. This is different from the classical matrix
elements which all decay exponentially for large frequency
[12].

Let us formally take the classical limit of the right-hand
side in Eq.(49). In this limit aE→1 and the right-hand side
becomes

kEuWuE8l

,
2p

GS 2p

n + 2
DS

2

n + 2
Î m

2A
D2p/sn+2d

v−1+f2p/sn+2dge−vt* .

s52d

This is precisely the asymptotic matrix element of the corre-
sponding classical problem derived previously by a purely
classical method[see Eq.(87) in Ref. [12]]. It is satisfying
that these two very different methods lead to the same result.

Denoting the quantum or classical meaning of the matrix
element by an index, we can write the main result in the form

kEuWuE + "vlquant

kEuWuE + "vlclass
, aEe−FsE+"vd+FsEd+"vF8sEd. s53d

In particular, in the asymptotic region of largev the ratio of
the matrix elements is independent of the operatorW.

B. Exponential potential

Let us compare with the exactly solvable exponential po-
tential. It has an essential singularity at infinity and the re-
sults of the previous section are applicable after some trivial
modifications.

The Schrödinger equation for the potential

Vsrd = Ae−r/L s54d

was solved exactly by Jackson and Mott[14]. Putting
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cEsrd = gEwkS r

L
+ rD s55d

with

2mAL2

"2 er = 1 s56d

the Schrödinger equation becomes

− wk9syd + e−ywksyd = k2wksyd, s57d

wherek is the dimensionless wave number

k2 =
2mL2

"2 E. s58d

The normalized solution is

wksyd =Î2k sinhs2pkd
p

K2iks2e−y/2d, s59d

where Kn is the modified Bessel function. The matrix ele-
ment of the potential has also been calculated exactly by
Jackson and Mott[14]. It is given by

kEuVuE8l = 4pmL2v
Îsinhs2pkdsinhs2pk8d
cosh 2pk8 − cosh 2pk

, s60d

whereE−E8="v. The classical matrix element is

E
−`

`

eivtV„rstd…dt =
2pmL2v

sinhSpLÎ m

2E
vD . s61d

Let us compare with our asymptotic results in the previ-
ous section. One finds after some algebra

aE = e−pkÎ2 sinh 2pk. s62d

and

Gs0d = lim
z−.−`

Î2m

" HE
z

r08 ÎAe−w/L − E8dw

−E
z

r0 ÎAe−w/L − EdwJ = psk − k8d. s63d

To calculate the asymptotic matrix element we cannot use
Eq. (49) directly since this assumes a singularity of the form
r−n. However we can use Eq.(53). From Eq.(61) we observe
that the factor multiplying the exponent in the classical ma-
trix element is 4pmL2v. Equation(53) then predicts for the
asymptotic quantum matrix element

4pmL2ve−pkÎ2 sinh 2pkepsk−k8d

= 4pmL2vÎ2 sinh 2pke−pk8 s64d

and this is indeed the correct asymptotic form of Jackson-
Mott’s result.

At zero frequency classical and quantum matrix elements
coincide. The reason is that for the exponential potential the
force is proportional to the potential. In general quantum and

classical matrix elements coincide[15] at v=0 if W=V8.

VI. NUMERICAL METHODS

In this section some methods for the numerical calcula-
tions of the matrix elements are discussed. The numerical
calculations were done using Mathematica, usually with a
precision of 16 or 24 digits. In a few cases up to 44 digits
were needed in the high energy region.

The matrix elements pose numerical problems only for
very large energy where the wave function oscillates very
rapidly. In such a case the path of integration must be de-
formed into some curve in the complex plane which damp-
ens the amplitude of the oscillations. However it turns out,
that this is not necessary for our purposes. The frequencies
accessible by integration on the real axis alone are amply
sufficient to verify the analytic predictions.

A. Potential V=Ar−12

As mentioned previously, the Schrödinger equation for
the homogeneous potential can be reduced by rescaling to
Eq. (18). We must calculate the amplitude ratioaE and the
matrix elements proper.

To obtain accurate values of the wave function, we split
the integration region into two parts. From the classical turn-
ing point atE−1/n to infinity the original Eq.(18) is solved.
From 0 to the classical turning point we extract the
asymptotic factor Eq.(24) and write

wszd = uszdzn/4 expH−
2

n − 2
z−sn−2d/2J . s65d

The resulting differential equation foruszd

u9 + S n

2z
+ 2z−n/2Du8 + SE +

n2 − 4n

16z2 Du = 0 s66d

is less singular atz=0. It can numerically be solved forz
*0.01. For smallz the relevant solution satisfies

uszd = 1 −
nsn − 4d
16sn − 2d

zsn−2d/2 + . . . , s67d

which furnishes the boundary condition. Pasting the two so-
lutions together yields the wave function.

Although we do not need it for the matrix elements, it is
interesting to determine the contourC of steepest descent
discussed in Sec. IV.

Figure 1 shows the contoursC of steepest descent for the
homogeneous potential withn=12 andE=0. The contours
are linear near the origin with slope tanp /7 and bend up-
wards near the classical turning pointE8−1/12. Far from the
origin they become vertical since Imhjszdj,const−ÎE8x for
large uzu. jszd is real and decays monotonically onC.

B. Lennard-Jones potential

To rescale the Schrödinger equation for the LJ potential

−
"2

2m
c9srd + 4eFSs

r
D12

− Ss

r
D6Gcsrd = Ecsrd, s68d

we put
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csrd = wsr/sd s69d

and obtain

− w9sxd + hsx−12− x−6dwsxd = k2wsxd, s70d

where

k2 = E
2m

"2 s2 s71d

is a dimensionless wave number and

h = 4e
2m

"2 s2 s72d

is a dimensionless parameter.
The numerical procedure for the LJ potential is very simi-

lar to the homogeneous potential.

VII. INITIAL AMPLITUDES

As mentioned previously, the factoraE is needed to cor-
rect for the fact that the WKB approximation is not exact for
the “slow” wave functioncE nearr =0. 1−aE is a measure
for the corresponding error.

In general, the amplitude ratioaE must be calculated nu-
merically. For very small and large energies, however, addi-
tional information is available.

We noted in Sec. III A that the large-E limit is identical to
the classical limit. In particular, the initial WKB amplitude is
asymptotically exact for largeE. ThereforeaE tends to 1 for
E→`. For smallE one can show thataE is proportional to
E1/4.

Figure 2 shows the amplitude ratio versus the scaled en-
ergy E for the homogeneous potentialV12.

For the Lennard-Jones potential the amplitude ratioaE
depends on the dimensionless parametersh and on the en-
ergy viaq=E/4e.

Figure 3 shows the dependence onq for varioush. For
large energy the WKB approximation becomes exact andaE
tends to 1 for allh. For small energy it is again proportional
to E1/4. For fixedq andh→` the system becomes classical
and aE→1 again. For very small energies, however,aE os-
cillates as a function ofh.

Figure 4 displays the amplitude versush for q=10−1,
10−2, and 10−3. For q→0 the amplitude diverges for certain
values ofh. This is due to the appearance of zero eigenval-
ues ath=22.36,148,385, . . . . For largeh the oscillations
decrease rapidly.

VIII. ASYMPTOTIC MATRIX ELEMENTS: COMPARING
ANALYTICAL AND NUMERICAL RESULTS

We are finally in a position to compare the analytical pre-
diction for the matrix elements with numerical results.

FIG. 1. ContoursC of steepest descent in the complex plane.
From left to rightE8=100, 10, 1, and 0.1.

FIG. 2. Amplitude ratioaE for V12 potential.

FIG. 3. Amplitude ratioaE for for the Lennard-Jones potential
versusq. From top to bottom:h=15, 10, 5, 2, 0.5, and 0.1.

FIG. 4. Amplitude ratioaE for for the Lennard-Jones potential
versush. Dotted curve:q=10−3; dashed curve:q=10−2; full curve:
q=10−1.
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In order to test approximation Eq.(53), we consider the
ratio of the two sides, i.e., we numerically calculate the qual-
ity factor

Q =
kEuWuE + "vlquant

kEuWuE + "vlclass
aE

−1eFsE+"vd−FsEd−"vF8sEd. s73d

Any deviation of Q from 1 directly measures the error in
approximation Eq.(53).

A. Potential V=Ar−12

From Eq.(18) we obtain for the matrix element

kEur−puE8l = gEgE8l
p−1E

0

`

x−pfEsxdfE8sxddx. s74d

The corresponding classical matrix element is

E
−`

`

r−pstdcossvtddt, s75d

whererstd satisfies the equation of motion

m

2
ṙ2 + Ar−n = E. s76d

We get rid of the constants by rescaling

rstd = SA

E
D1/n

ysv0td, s77d

where

v0 =Î E

2m
SE

A
D1/n

s78d

is the natural frequency scale of the classical system[12].
ysxd satisfies

1

4
y82 + y−n = 1 s79d

and the classical matrix element becomes

Î2m

E
SE

A
Dsp−1d/nE

−`

`

y−pszdcosS v

v0
zDdz. s80d

The ratio of the matrix elements then is

kEur−puE8lquant

kEur−puE8lclass
= 2S E

E8
D1/4

E−sp−1d/n

E
0

`

x−pfEsxdfE8sxddx

E
−`

`

y−pszdcosS v

v0
zDdz

,

s81d

with E8=E+"v as usual.E8 is related tov by

E8 = E +
v

v0
Esn+2d/2n. s82d

The exponent in Eq.(73) is

Îp

GS1

2
+

1

n
D

GS1

n
D F n

n − 2
sE8sn−2d/2n − Esn−2d/2nd −

v

2v0
G ,

s83d

where Eq.(50) has been used.
Figure 5 shows the quality factor forp=13, i.e.,W=V8.

As expectedQ→1 for v@v0 or E@1. In this case quantum
and classical matrix element coincide forv=0. Forv→0, Q
tends toaE

−1 (compare Fig. 2).
For functions of the typeWsrd=r−p the matrix elements

depend only onE and E8. If W is not of this form, new
dimensionless parameters are generated which make an over-
view of the quality of approximation Eq.(53) more time
consuming. As a single example let us consider the exponen-
tial

Wsrd = Ae−r/L, s84d

again for the homogeneous potential Eq.(13) with n=12.
OperatorsW of this kind are of interest in collision-induced
absorption[4]. Here the new dimensionless parameter

FIG. 5. Quality factorQ for V12 potential andp=13. From top
to bottom:E=1, 3, 10, and 50.

FIG. 6. Quality factor forV12 potential and exponentialW
=e−z/z for z=0.2 (broken lines) andz=5 (full lines). Values ofE are
1, 3, 10, and 50.E increases for broken(full ) lines from bottom to
top (top to bottom).
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z = Ll s85d

appears wherel is defined in Eq.(17).
Figure 6 displays the quality factor of exponentialW for

various values ofE andz. As expected, approximation(53)
becomes exact in the limitv→` or E→`.

B. Lennard-Jones potential

For the LJ potential the most interesting operatorW is the
force. A natural frequency scale is

v0 =Î8e

m
s−1. s86d

Figure 7 displays the quality factor forW=V8. Different
curves refer to different values ofh [see Eq.(72)]. As ex-
pected,Q→1 and the approximation(53) becomes exact if
v or h tend to infinity. The energyE of the “slow” compo-
nent is fixed atq=1 in Fig. 7.

The error is maximal for frequencies 1&v /v0&10. In
order to obtain an overview over the maximal error, Fig. 8
shows a contour plot of the maximal value ofQ, Qmax, as a
function of h andq.

In Fig. 8 the corresponding value ofv varies from
v /v0=0.4 for the smallestq andh to v /v0=8 for the largest
values ofq and h. As expected,Qmax tends to 1 ifq or h
tends to infinity.

IX. SUMMARY

A simple and asymptotically exact relation[Eq. (49) or
(53)] is derived for the quantum matrix elementkEuWuE8l if
one (but not both) of the energies becomes very large. The
matrix elements refer to two-body collisions and it is as-
sumed that the interaction potential is strongly singular. The
method is an elaboration of an idea of Landau discussed in
Landau-Lifshitz[8].

For potentials with a singularity atr =0 the condition of
strong singularity isVsrd, r−n, n.2 for smallr. An example
is the Lennard-Jones potential.

The theory applies to a few other potentials like the ex-
ponential potential. The Coulomb potential, however, is not
strongly singular and shows qualitatively different decay
properties.

In the form Eq.(53) the main approximation shows small
to moderate errors over the whole frequency range when
compared to numerical calculations. For example, Fig. 7 dis-
plays the relative errorQmax versus frequency for the
Lennard-Jones potential.

For largeE the matrix elements of such potentials decay
faster than any power but slower than exponentially. For po-
tentials Vsrd, r−n, n.2 the ultimate decay is,exph−Esj
with s=sn−2d /2n. The exponential potential corresponds to
s=1/2. There are indications thatsø1/2 for all strongly
singular potentials.
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